Enter your keyword

2-s2.0-85061921767

[vc_empty_space][vc_empty_space]

Design of Neuron Net Function using Modified Radix-4 Booth Multiplier with a Flipped Logic Parallel Prefix Adder

Akbar A.a, Adiono T.a, Harimurti S.a, Putra T.A.M.a

a School of Electrical Engineering, Informatics Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE. This paper presents a full custom implementation of net function as a building block of neuron in an Artificial Neural Network system. The net function is implemented using radix-4 booth multiplier architecture. The main challenge or bottle neck in a booth multiplier architecture is designing an efficient adder. In this work, we propose a flipped logic parallel prefix adder to optimize the performance of the multiplier. By using this adder, the processing stages are able to be reduced more than a half, which resulting in a significant improvement of the propagation delay. The system has a total layout area of 0.027 mm 2 with maximum operating frequency of 3.4 MHz. The circuit and layout design are implemented on 130nm CMOS technology.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Booth multipliers,Building blockes,CMOS technology,Layout designs,Maximum operating frequency,Parallel prefix adder,Processing stage,Propagation delays[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial Neural Network,Booth Multiplier,Net function,Neuron,Parallel prefix adder,Propagation delay[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ISESD.2018.8605453[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]