[vc_empty_space][vc_empty_space]
Modeling and implementation of hexacopter guidance system using fuzzy logic control under wind disturbance
Megayanti M.a, Nugraha Y.P.a, Sary I.P.a, Hidayat E.a, Trilaksono B.R.a
a School of Electrical Engineering, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.Recently, research in Unmanned Aerial Vehicle (UAV) field is growing rapidly due to their evolving needs in many implemented sectors. In this research, we use hexacopter for monitoring contaminated chemical-radioactive-nuclear (CRN ) area. The hexacopter need high altitude and attitude stabilization to tracking way point precisely. The PID guidance system with FLC intervention is used to produce correction signal to improve the tracking performance of the hexacopter. Software in the loop (SITL) simulation using Matlab and Robotic Operating System (ROS) was conducted to verify Fuzzy-PID intervention guidance performance before implementation. Based on simulation and experimental result, it shown that the tracking performance of the hexacopter in terms faster transient response, smaller error steay state, faster settling time, better static and dynamics performance and robust under wind disturbance for altitude and attitude have been improved by using Fuzzy-PID intervention algorithm.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Attitude stabilization,Dynamics performance,Fuzzy-PID,Guidance performance,Hexacopter,Software in the loops,Tracking performance,Wind disturbance[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chemical-Radioactive-Nuclear (CRN),Fuzzy-PID Intervention Control,Hexacopter,Robotic Operating System (ROS),Unmanned Aerial Vehicle (UAV),Wind Disturbance[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT This work was partially funded by The Research, Technology and Higher Education, Indonesia through the PUSNAS 2017 Program.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICSEngT.2018.8606399[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]