[vc_empty_space][vc_empty_space]
Curling evolution of suspended threads replicates 2D self-avoiding walk phenomena and 1D crystallization process
Rahmayanti H.D.a, Munir R.a, Sustini E.a, Abdullah M.a
a Department of Physics, Bandung Institute of Technology, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IOP Publishing Ltd and SISSA Medialab srl.The conformation evolution of threads that fall freely after being released from varying altitudes was investigated and compared to behaviors generated by other well-known fundamental physical processes. It was observed that the thread conformation replicated the conformation of long polymer chains, motivating the authors to apply a 2D self-avoiding walk (SAW) model to explain their stable conformation. Strong evidence was identified that the thread conformation strongly resembles 2D SAW behavior and has scaling power comparable to that of a 2D SAW. Also, by fitting how thread end-to-end distance evolves with time, an equation was obtained that is exactly identical to the modified Avrami equation, which is usually used for explaining phase transformation processes in 1D space (D = 1). The exponential power of n = D + 1 = 2 was simply obtained in our fitting. In conclusion, it can strongly be stated that the evolution of thread conformation over time replicates the crystallization process in 1D space and an SAW in a 2D space, showing that these microscopic processes can be replicated at macroscopic scale.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]classical phase transitions,networks,random graphs[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The PMDSU (Program Magister Doktor Sarjana Unggul) research grant from the Ministry of Research and Higher Education, Republic of Indonesia No. 535C/I1.C01/ PL/2018 for HDR is gratefully acknowledged.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-5468/aaf322[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]