[vc_empty_space][vc_empty_space]
(H 1, H 2)-supermagic labelings for some shackles of connected graphs H 1 and H 2
Ashari Y.F.a, Salman A.N.M.a
a Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Let H 1 and H 2 be two graphs. A simple graph G = (V(G),E(G)) admits an (H 1, H 2)-covering, if every edge in E(G) belongs to at least one subgraph of G isomorphic to H 1 or H 2. The graph G is called (H 1, H 2)-magic, if there are two fixed positive integers k i and k 2, and a bijective function f : V(G) ∪ E(G) → {1, 2,…, |V(G)| + |E(G)|} suchthat ∑v∈V(H′) f(v) + ∑e∈E(H′) f(e) = k 1 and ∑v∈V(H″) f(v) + ∑e∈E(H″) f(e) = k 2, for every subgraph H′ = (V(H′), E(H′)) of G isomorphic to H 1 and for every subgraph H″ = (V(H), E(H)) of G isomorphic to H 2. Moreover, it is said to be super (H 1,H 2)-magic, if f(V(G)) = {1, 2,…, |V(g)|}. This paper aims to study an (H 1, H 2)-supermagic labelings for some shackles of connected graphs H 1 and H 2 such as cycle, flower, and prism graph. A shackle of G 1, G 2, G 3,…, Gk denoted by shack(G 1, G 2, G 3,…, Gk ) is a graph constructed from nontrivial connected and ordered graphs suchthat for every i and j ∈ [1, k] with |i – j| > 2, G i and Gj have no common vertex, and for every i ∈ [1, k – 1], Gi and G i+1 share exactly one common vertex, called linkage vertex, where the k – 1 linkage vertices are all distinct. In case G i is isomorphic to H 1 for odd i and Gi is isomorphic to H 2 for even i, we denote such shackle by shack(H 1, H 2, k). We give a sufficient condition for some shack(H 1, H 2, k) being (H 1, H 2)-supermagic for even k.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text](H1; H2)-covering,(H1; H2)-supermagic,Bijective functions,Connected graph,Fixed positive integers,Labelings,shackle,Two-graphs[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text](H1; H2)-covering,(H1; H2)-supermagic,shackle[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1127/1/012059[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]