Enter your keyword

2-s2.0-85062777026

[vc_empty_space][vc_empty_space]

Nonlinear Stability Analysis of Vehicle Side-Slip Dynamics using SOS Programming

Tamba T.A.a,c, Nazaruddin Y.Y.b,c

a Parahyangan Catholic University, Faculty of Industrial Technology, Dept. of Electrical Engineering (Mechatronics), Indonesia
b Instrumentation and Control Research Group, Institut Teknologi Bandung, Indonesia
c National Center for Sustainable Transportation Technology (NCSTT), Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.This paper proposes a convex polynomial optimization method based on sum of squares (SOS) programming techniques for estimating the region of attraction (RoA) of a vehicle tire side-slip dynamics. The paper first derives a dynamic model of a four-wheels tire side-slip which takes into account the nonlinear lateral force characteristic of the tires. In order to accommodate the use of SOS programming techniques, a polynomial approximation model of the tire slip dynamics is then derived. An SOS program which implements Lyapunov’s second method for stability analysis is then proposed to estimate the RoA of a stable equilibrium point in the derived approximate polynomial tire slip model. Simulation results from the implementation of the proposed RoA estimation method is reported to illustrate the good performance of the proposed method.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Approximate polynomials,Estimation methods,Nonlinear stability analysis,Polynomial optimization,Programming technique,Region of attraction,Slip dynamics,Stability analysis[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Lyapunov method,nonlinear stability analysis,region of attraction,SOS programming,Vehicle slip dynamics[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by USAID through the Sustainable Higher Education Research Alliances (SHERA) program under grant number IIE00000078-ITB-1.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEVT.2018.8628351[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]