Enter your keyword

2-s2.0-85062795223

[vc_empty_space][vc_empty_space]

Experimental Modeling of a Quadrotor UAV Using an Indoor Local Positioning System

Arifin M.S.a, Nazaruddin Y.Y.a,b, Tamba T.A.b,c, Santosa R.A.a, Widyotriatmo A.a

a Instrumentation Control Research Group, Faculty of Industrial Technology Institut Teknologi, Bandung Bandung, Indonesia
b National Center for Sustainable Transportation Technology (NCSTT), Bandung, Indonesia
c Dept. Electrical Engineering (Mechatronics), Parahyangan Catholic University, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.This paper reports the results obtained from an experimental modeling of a vertical take-off and landing type unmanned aerial vehicle (UAV). The considered UAV is an ar.drone quadrotor UAV which consists of a rigid body with fours arms, each of which is mounted with a rotor for motion and flight control. To complement onboard sensors installed on the UAV (i.e. ultrasonic sensor IMU), an indoor local positioning system is used in the experiment to obtain the global positioning data of the quadrotor UAV. The modeling is performed using system identification technique whereby the UAV is subjected to certain inputs and its real-time output is observed and then used to estimate the model. From the experiment, it was found that a fifth order linear state space equation model captures the dynamics of the considered quadrotor UAV sufficiently good.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Experimental modeling,Global positioning,Local positioning system,On-board sensors,Quad-rotor UAV,State space equation,System identification techniques,Vertical take-off and landings[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Local Positioning Systems,Modeling and Identification,Quadrotor UAV[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT The authors gratefully acknowledge financial research support for this work from the Ministry of Research, Technology and Higher Education of the Republic of Indonesia (Kemenristekdikti) under fundamental research scheme (PDUPT) at Institut Teknologi Bandung, 2018. This work was supported in part by USAID through the sustainable higher education research alliances (SHERA) program under grant number IIE00000078-ITB-1.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICEVT.2018.8628424[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]