[vc_empty_space][vc_empty_space]
Development of Bendable Antenna Reflector Based on Artificial Magnetic Conductor
Munir A.a, Aprizal M., Nur L.O., Nugroho B.S.
a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Infomatics, Institut Teknologi Bandung, Indonesia
b School of Electrical Engineering, Telkom University, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 KIEES.This paper proposes the development of bendable antenna reflector designed based on artificial magnetic conductor (AMC) workable at the Industrial, Scientific and Medical (ISM) frequency band of 2.4GHz-2.5GHz. The proposed AMC reflector is composed of 3 × 3 squares patches in which each patch has a square concentric ring slots with a gap on each side. In order to be bendable, a 0.5mm thick RO3003® dielectric substrate with the relative permittivity of 3.0 is used for the deployment. A printed dipole antenna deployed on the same dielectric substrate is used for characterizing the property of proposed AMC reflector. The characterization results show that the use of bendable AMC reflector could improve the antenna performance in terms of gain more than 4dB and the radiation pattern to be unidirectional.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Antenna performance,Artificial magnetic conductors,bendable reflector,Concentric rings,Dielectric substrates,Printed dipole antennas,Relative permittivity,Square patches[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial Magnetic Conductor (AMC),bendable reflector,dipole antenna,square patch[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported in part by the National Strategy Institution Research Program from the Ministry of Research, Technology, and Higher Education the Republic of Indonesia, FY2017-FY2018, under contract No. 0788/K4/KM/2018.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]