[vc_empty_space][vc_empty_space]
Biooxidation pretreatment of low grade refractory gold tailings using a sulfur-oxidizing mixotrophic bacterium
Purnomo I.a, Chaerun S.K.a, Mubarok M.Z.a
a Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.An inefficient gold leaching in the cyanidation process from refractory gold tailings was caused by gold particle locked in specific minerals. The aim of this study was to harness the ability of a sulfur-oxidizing bacterium to oxidize iron and sulfur and its behaviour on ferrous sulfate heptahydrate (FeSO4.7H2O) and pyrite (FeS2) as the medium in the biooxidation process for gold and silver extraction. The results showed that the gold extracted in ferrous sulfate medium was 20.48%, while that in pyrite medium tended to reduce from direct cyanidation to 14%. The silver extraction increased from 80.96% to 99.26% in ferrous sulfate medium and 91.30% in pyrite medium. This result indicated that ferrous sulfate heptahydrate was more suitable than pyrite, which resulted in the higher extraction of gold.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Biooxidation process,Extraction of golds,Ferrous sulfate,Gold and silver,Gold particles,Refractory gold,Silver extraction,Sulfur oxidizing bacteria[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors thank all the members and students of the Chaerun Laboratory for their assistance and cooperation. IP would also like to thank the Indonesia Endowment Fund for Education (LPDP-RI) for the scholarship provided during his study at Institut Teknologi Bandung.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/478/1/012020[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]