Enter your keyword

2-s2.0-85063045533

[vc_empty_space][vc_empty_space]

Non-linear numerical modeling of partially pre-stressed beam-column sub-assemblages made of reactive powder concrete

Budiono B.a, Nurjannah S.A.b, Imran I.a

a Structure Research Group, Civil Engineering Department Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Civil Engineering Department, Universitas Sriwijaya, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Published by ITB Journal Publisher.Three partially pre-stressed interior beam-column sub-assemblages (SI) and two partially pre-stressed exterior beam-column sub-assemblages (SE) made of reactive powder concrete as test specimens were numerically modeled using a finite element program. The objective of this study was to investigate the behavior of the SI and SE numerical models. The numerical model inputs were: material data, details of test specimen dimensions, and test specimen reinforcements. The numerical models were subjected to the same loads as those applied experimentally. The numerical modeling results were hysteretic and backbone curves and stress distribution contours. The numerical model outputs showed good similarity with the experimental results. The stress distribution contours of the numerical models correlated with the crack patterns in the joint zone of the test specimens. The behavior of the SI numerical models differed from the SE numerical models due to various stresses on the beam plastic joints and the joint zones.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Backbone curves,Crack patterns,Finite element numerical models,Finite element programs,Non-linear numerical model,Pre-stressed,Reactive powder concrete,Test specimens[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Crack pattern,Finite element numerical model,Partially pre-stressed,Reactive powder concrete,Stress distribution[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This study was supported by PT Wijaya Karya Beton, Indonesia under a joint research with the Faculty of Civil and Environment Engineering, Institut Teknologi Bandung.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/j.eng.technol.sci.2019.51.1.3[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]