[vc_empty_space][vc_empty_space]
Influence of electrode distance on electrical energy production of microbial fuel cell using tapioca wastewater
Harimawan A.a, Devianto H.a, Al-Aziz R.H.R.M.T.a, Shofinita D.a, Setiadi T.a
a Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Published by ITB Journal Publisher. The microbial fuel cell (MFC) is an alternative technology that can be used to simultaneously solve problems related to wastewater production and energy demand. This study investigates the influence of electrode distance on power density in a microbial fuel cell using tapioca wastewater. A graphite sheet without metal catalyst was used for both electrodes, separated by a Nafion membrane. Four variations of electrode distance were used. The MFC with the longest electrode distance achieved the highest equilibrium OCV (676 mV), while the MFC with the shortest electrode distance achieved the highest power density (7.74 mW/m 2 ). Electrochemical impedance spectroscopy (EIS) measurement suggested that the charge transfer resistance was dominant in all MFC configurations. The wastewater COD removal was in the range of 35-46%, which is in accordance with the power density of MFCs.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Alternative technologies,Charge transfer resistance,COD removal,Electrical energy,Electrochemical impedance spectroscopy measurements,Electrode distances,Power densities,Tapioca wastewaters[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]COD removal,Electrode distance,Microbial fuel cell,Power density,Tapioca wastewater[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported under the P3MI ITB (Program Penelitian, Pengabdian kepada Masyarakat, dan Inovasi Institut Teknologi Bandung) funding scheme.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/j.eng.technol.sci.2018.50.6.7[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]