Enter your keyword

2-s2.0-85063231464

[vc_empty_space][vc_empty_space]

Interference Limit based Resource Allocation for Low Density Signature OFDM in Underlay Cognitive Radio Networks

Meylani L.a, Kurniawan A.a, Arifianto M.S.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b School of Electrical Engineering, Telkom University, Bandung, 40257, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.In underlay cognitive radio, cognitive users (CU) or secondary users (SU) are allowed to use a licensed spectrum band simultaneously with primary users (PU) as long as the overall interference generated is still below PU’s interference limit. To accommodate the large number of SU users and manage the interference in each subcarrier, CR system used low density signature orthogonal frequency division multiplexing (LDS-OFDM) as a multiple access scheme. LDS-OFDM allows each user to spreading their symbols on a small set of subcarriers and set the number of users that using the same resources. This paper proposes a radio resource allocation scheme for SU with respect to dc as a number of users that allowed to access subcarrier and the interference threshold required by PU. The simulation results show that the outage probability not only depend on the interference limit (IL) determined by PU but influenced by the number of subcarriers that can be accessed by SU (dv) and the number of users allowed to access a resource (dc) as well.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Interference limits,Low density spreading,Multiple access scheme,Outage probability,Radio resource allocation,Secondary user,Underlay cognitive radios,Uplink communication[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Low density spreading,resource allocation,underlay cognitive radio,uplink communication[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TENCON.2018.8650061[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]