[vc_empty_space][vc_empty_space]
Synthesis of cineole from raw turpentine
Putra I.A.a, Azis M.M.b, Soerawidjaja T.H.a, Indarto A.a
a Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Department of Chemical Engineering, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Author(s).Cineole is one of monoterpene compounds usually produced from aromatic plants especially pine trees. It is mostly used for flavoring agent, aromatherapy, herbicide active compound, and pharmaceutical industry. Raw turpentine from pine tree has several derivatives, such as: α-pinene, β-pinene, limonene, δ-carene, camphene, terpineol, etc., with cineole being the component with the highest market price. However, there is no direct pathway to produce cineole from raw turpentine. Commonly, cineole presents as a side product from hydration of α-pinene or turpentine to terpineol and this process will not be economic. The distillation process to separate cineol from other components would be difficult and energy demanding because of its low concentration in the product. In this study, synthesis of cineole was conducted in a hope to obtain higher yield of cineole. The methods were managed in two reaction steps. First, the reaction of raw turpentine with water and acid catalysts to form terpineol for 3 hours at 85°C. Second, drawn off the water from the mixture then continue the reaction for 3 more hours at the same temperature to let terpineol isomerizes and becomes cineole. Based on the experimental results, it was found that using combined p-toluenesulfonic acid (PTSA) with several weak acids i.e. oxalic acid, citric acid, and formic acid, each at certain optimum composition, resulted 10.6% – 21.8% of cineole. These results are better than the previous generic process which cineole produced below 5%.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors acknowledge a part of funding for this research from 2018 & 2019 KIST School Partnership Project of Korea Institute of Science and Technology (KIST) and P3MI of Institut Teknologi Bandung. The author would like to thank Perhutani Pine Chemical Industry (PPCI), Pemalang, Indonesia for the research support.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.5095035[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]