Enter your keyword

2-s2.0-85063630639

[vc_empty_space][vc_empty_space]

Integration of the analytical, empirical, and numerical methods in analyzing support requirements for tunneling in weak rock mass

Prassetyo S.H.a, Gutierrez M.b

a Institut Teknologi Bandung, Indonesia
b Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, United States

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Taylor & Francis Group, London.This paper presents the results of the integration of analytical, empirical, and numerical methods in analyzing the support requirements needed to stabilize a hypothetical circular tunnel in a weak rock mass. The convergence-confinement method is used as the analytical method to determine the required support pressure to control tunnel displacement. Rock mass classification systems (RMR and Q) are used as the empirical method to evaluate the quality and strength of the rock masses and to obtain the recommended support systems. Finally, two-dimensional plane strain and axisymmetric models in the computer program FLAC are used as the numerical method to evaluate the ground behavior and the performance of the recommended support systems. Results show that after the suggested support system is installed, the extent of deformation and the thickness of the plastic radius around the tunnel decreases significantly. This result indicates that the integration of the analytical, empirical, and numerical methods in designing tunnel support is recommended for a reliable support design. Simplicity in the analytical and analytical methods may lead to the first estimate of ground behavior, while the numerical method can be used to verify the performance of the excavated ground and of the support system suggested by the empirical method.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]FLAC,Overstressed region,Plastic zones,Rock mass classification,Tunnel support,Weak rock[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Convergence-confinement,FLAC,Overstressed region,Plastic zone,Rock mass classification,Tunnel support,Weak rock mass[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors acknowledge support from the University Transportation Center for Underground Transportation Infrastructure (UTC-UTI) at the Colorado School of Mines for funding this research under Grant No. 69 A3551747118 from the U.S. Department of Transportation (DOT).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]