[vc_empty_space][vc_empty_space]
Development of ANN-based predictive model for miscible CO2 flooding in sandstone reservoir
Khamidy N.I.a, Tariq Z.a, Syihab Z.b
a King Fahd University of Petroleum and Minerals, Saudi Arabia
b Bandung Institute of Technology, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019, Society of Petroleum Engineers.Up to 2010, 44.55% of 312 EOR’s project for light oil implemented around the world in sandstone reservoirs were come from continuous miscible gas CO2 injection which contributed to an incremental Recovery Factor (RF) of about 34.5% for less than 10 years of production period. This fact has triggered many oil industries to apply this potential and proven technogy for their assets. This potential comes with the needs of having a robust tool to forecast additional recovery due to CO2 injection. This work focuses to development of predictive model using artificial neural network (ANN). More than 6000 series of input-output parameters for ANN training and validation/testing data are extracted from numerical reservoir simulator of 1/8 of five-spot pattern models. The models are set as combination of reservoir geometry, rock, fluid and well operating condition parameters within the range of CO2 EOR screening criteria. The main objective of this work is to find the best ANN architecture/model which accurately matches reservoir simulation results, especially the relationship of RF, total volume of injected CO2 (GI) and the reservoir characteristics and well operating conditions. Trial and error of ANN architectures and parameters are done on number of hidden layers, number of neurons for each hidden layer, learning rate (LR) value, and momentum constant (MC) with minimization algorithm (Lavenberg-Marquardt) in Feed-Forward Back Propagation (FFBP) schemes under log-sigmoid transfer function. An optimum result of ANN model is achieved with an architecture of 18-26-11-2. The relative error of RF and GI of the ANN model are within range of 3 to 10% respectively. A better average relative error of RF and GI of 2.8% and 4.15% respectively are obtained after removing the outliers (unrealistic combinations of input data) from training process of the ANN model. Furthermore, it is clearly found that oil viscosity plays the most the important factor in CO2 EOR method.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Feed-forward back propagation,Five-spot,Homogeneous,Minimization algorithms,Predictive modeling,Reservoir characteristic,Sandstone reservoirs,Sigmoid transfer function[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]ANN,Artificial Neural Network,Continuous miscible gas CO2 flooding,Five-spots pattern,Homogeneous,Predictive model,Sandstone reservoirs[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]