[vc_empty_space][vc_empty_space]
Development of CSAMT impedance modeling and its estimation
a Physics of Complex System Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2015 AIP Publishing LLC.Accurate modeling and estimation of impedance functions is essential for the correct interpretation of Controlled Source Audio Magnetotelluric (CSAMT) measurements. Non plane wave effect of CSAMT source and noises are inevitably encountered when CSAMT observations are conducted and, consequently, impedance estimates are usually based on least-squares (LS) approximation, and the resulting estimates need to be corrected for the non plane wave field fraction. However, estimation procedure based on LS would not be statistically optimal, as outliers (abnormal data) are frequently superimposed on a normal ambient CSAMT noise field. In this situation, the estimation can be seriously misleading, while plane wave correction has also limited application, as the non plane wave field fraction is reasonably strong. This paper briefly discus the recent development of alternative methods for the CSAMT impedance modeling and its estimation, those are efficient in nature. The means for accomplishing the non plane wave problem is based on full solution numerical modeling of CSAMT impedance function that accommodates the non plane wave effect in the function. Whilst, one appealing approach to dealing with outliers is to make the estimation procedure robust. This is based on the M-estimation and the Hilbert transform operating on the causal CSAMT impedance functions. As demonstrated, the full solution based modeling for CSAMT impedance function is applied for all measurement zones, including near-, transition- as well as the far-field zones, and suitably, the plane wave correction is no longer needed for the impedance function. In the resulting impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic data, it is shown that the proposed methods can produce usable CSAMT impedance functions for all measurement zones, even under condition of severe noise contamination.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]CSAMT impedance,Full solution modeling,Hilbert transform,M-estimator,Robust estimation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.4921048[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]