Enter your keyword

2-s2.0-85064380856

[vc_empty_space][vc_empty_space]

Noise reduction of air conditioning electric railway cabin

Hartati T.N.a, Pangihutan G.S.a, Prasetiyo I.a, Sugeng Joko Sarwono R.a, Sabdono A.S.a, Zakri K.W.a

a Engineering Physics Program, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 American Institute of Physics Inc. All rights reserved.The development of electric railway train has been growing rapidly in the last few years. Comfort is one of the important aspects in electric railway cabin, including the acoustic comfort. Ä°n this paper, noise reduction efforts for air conditioning system of electric railway trains are discussed. Air-borne noise and structure-borne noise are considered while finite element analysis is used to study the contribution of each path to the total sound pressure level found in the passenger area. The air-borne noise control is realized by using the acoustic liner on the internal wall of the ducting where fibrous porous absorbers are used. This approach decreases the sound pressure level as much as 29.3 dB. Meanwhile, the structure-borne noise is reduced by placing a set of a parallel stiffener at the ducting wall. This approach can reduce the sound pressure level up to 28.9 dB at low-frequency range. Combining both of the acoustic liner and stiffener altogether can reduce the sound pressure level up to 37.1 dB by which the overall sound pressure level at passenger area is around 51.2 dBA.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to acknowledge for the publication support provided by Pusat Unggulan IPTEK – Sustainable Transportation Technology (PUI – STT) Institut Teknologi Bandung, Bandung, Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.5095339[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]