Enter your keyword

2-s2.0-85064380991

[vc_empty_space][vc_empty_space]

Path Reference Generation for Upper-Limb Rehabilitation with Kinematic Model

Barri M.H.a, Widyotriatmo A.a, Suprijantoa

a Instrumentation and Control Program, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.An upper-limb kinematic model is studied for generating a path reference for rehabilitation. An eight-degrees-of-freedom (8-DOF) model of the upper-limb is presented and a path reference is generated based on the model. The path reference is generated with regards to the subject parameters, such as the length from the chest to shoulder, the length of upper arm, and the length of lower arm that can be implemented for individual subjects. Different with trajectory generation, the time is not considered when a subject is asked to follow the desired movement. In other words, the subject needs to follow an ideal movement with no constraints to the time when a configuration of upper-limb should be achieved. The implementation of the path reference generation and the comparison between the path reference and the actual measurement of a healthy subject is conducted performing shoulder forward flexion motion. The result shows the potential use of the proposed method for upper limb rehabilitation.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Actual measurements,Healthy subjects,Kinematic model,Reference Generation,Trajectory generation,Upper arm,Upper limbs,Upper-limb rehabilitation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]biomechanics,kinematic,kinematics,path-planning,rehabilitation,upper-limb[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ROBIONETICS.2018.8674676[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]