[vc_empty_space][vc_empty_space]
Applying GMM-UBM framework for Indonesian forensic speaker verification
Firmanto A.D.a, Mandasari M.I.a, Suprijantoa, Fathurrahman F.b
a Instrumentation and Control Research Group, Bandung Institute of Technology Bandung 2 Engineering Physics Research Group, Bandung Institute of Technology Bandung, Indonesia
b
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 American Institute of Physics Inc. All rights reserved.A text-dependent speaker verification system has been implemented for forensic application since 2008 when speech recording is allowed as legal evidence in Indonesian court. Due to the laborious procedures of the current system, an automatic text-independent speaker verification system is being developed in order to accelerate the forensic speaker verification process. The new forensic system is developed using a database spoken in Indonesian. The database is built on two scenarios, interview and conversation. This is done to simulate the real forensic condition for speaker verification in Indonesia. The system adopts the very famous Gaussian Mixture Model (GMM) and Universal Background Model (UBM) framework in speaker verification field and using Mel-Frequency Cepstral Coefficients (MFCC) as the speech feature. Along with the application of zero-normalization, the new forensic speaker verification system has successfully reached an Equal Error Rate (EER) of 4.66 % that is a better performance than the previous developed system of Indonesian forensic speaker verification.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.5095347[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]