Enter your keyword

2-s2.0-85064572146

[vc_empty_space][vc_empty_space]

Variational approximations using Gaussian ansatz, false instability, and its remedy in nonlinear Schrödinger lattices

Rusin R.a,b, Kusdiantara R.a,c, Susanto H.a

a Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
b Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Ged D Lt, FMIPA Kampus UI, Depok, 16424, Indonesia
c Centre of Mathematical Modelling and Simulation, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IOP Publishing Ltd Printed in the UK.We study the fundamental lattice solitons of the discrete nonlinear Schrödinger (DNLS) equation and their stability via a variational method. Using a Gaussian ansatz and comparing the results with numerical computations, we report a novel observation of false instabilities. Comparing with established results and using Vakhitov–Kolokolov criterion, we deduce that the instabilities are due to the ansatz. In the context of using the same type of ansatzs, we provide a remedy by employing multiple Gaussian functions. The results show that the higher the number of Gaussian function used, the better the solution approximation.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Discrete nonlinear Schrödinger equation,Discrete solitons,False instability,Gaussian function,Variational methods[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]RR (Grant Ref. No: S-5405/LPDP.3/2015) and RK (Grant Ref. No: S-34/LPDP.3/2017) gratefully acknowledge financial support from Lembaga Pengelolaan Dana Pendidikan (Indonesia Endowment Fund for Education). The authors gratefully acknowledge the two anonymous referees for their careful reading.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1751-8121/aae4be[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]