Enter your keyword

2-s2.0-85065057475

[vc_empty_space][vc_empty_space]

SFCW Signal Generator Based on ATMega328 Microcontroller and Rl2R Ladder Networks

Hakim N.F.A.a, Najmurrokhman A.b, Arifianto M.S.a, Munir A.a

a Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Lnstitut Teknologi Bandung, Bandung, Indonesia
b Department of Electrical Engineering, Faculty of Engineering, Universitas Lenderal Achmad, Yani Cimahi, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.One of continuous waves signals frequently applied for through-wall radar (TWR) application is stepped-frequency continuous wave (SFCW). As a main part in SFCW-TWR system, the SFCW signal should be generated as precise as possible to rely the system works properly. In this paper, the SFCW signal generator is presented and designed based on ATMega328 microcontroller combined with Rl2R ladder networks. Here, ATMega328 microcontroller is applied to generate digital signals to be converted into analog signals by R/2R ladder networks. The use of ATMega328 microcontroller and R/2R ladder networks is expected to produce high quality SFCW signal as well as be low cost in order to be implementable for TWR with working frequency of 1600-2500 MHz. Prior hardware realization, the proposed SFCW signal generator was analyzed through simulation software in obtaining the SFCW signal satisfiable the requirement. The measured result shows that the signal produced by realized SFCW signal generator has a step signal form implementable for the desired application.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Continuous Wave,Digital signals,Hardware realization,Measured results,Simulation software,Stepped frequency continuous waves,Through walls,Working frequency[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]ATMega328 microcontroller,Rl2R ladder networks,stepped-frequency continuous-wave (SFCW),through-wall radar (TWR)[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work is partially supported by the postgraduate team research program (Penelitian Tim Pasca Sarjana) from the Ministry of Research, Technology and Higher Education, the Republic of Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/EECCIS.2018.8692961[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]