Enter your keyword

2-s2.0-85065092125

[vc_empty_space][vc_empty_space]

Sparsity Representation of Beat Signal in Weather Radar for Compressive Sampling

Purnamasari R.a, Suksmono A.B.a, Edward I.J.M.a, Zakia I.a

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.The beat signal that collected by weather radar in one rotation scanning per minutes are very large. One of method to reduce the volume of beat signal is commonly using compression technique. Since one decade ago, Compressive Sampling (CS) algorithm is begin popular as a new compression technique. CS is a new technique in data acquisition that can reconstruct the signals by take sample less than traditional sampling algorithm. To reach the efficiency, CS requires that the beat signals to be processed have sparsity on a particular base. In this paper we proposed FFT algorithm for transform into sparsity basis and random orthonormal basis as measurement rate. The recovery of beat signals in this paper are reconstructed by convex optimization as the development of minimum \ell-{1} norm reconstruction. The proposed scheme are outperform in accuration but has long computation which takes about 4.8 minutes.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Beat signals,Compression techniques,Compressive sampling,FFT algorithm,Orthonormal basis,Sampling algorithm,Sparse representation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Beat signal,Compressive sampling,Sparse representation,Weather radar[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGEMENT The authors would like to thank to Telkom University and Indonesia Ministry of Higher Education for the financial support of this research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TENCONSpring.2018.8691902[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]