[vc_empty_space][vc_empty_space]
Dynamics of β-carotene and fucoxanthin of tropical marine Navicula sp. as a response to light stress conditions
Telussa I.a, Rusnadia, Zeily Nurachmana
a Biochemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Elsevier B.V. We investigated the dynamics of β-carotene and fucoxanthin produced by the tropical marine Navicula sp. that were cultured indoors and outdoors. To obtain high biomass and carotenoid levels, the growth of Navicula sp. in three different nitrogen media (ammonium, urea, and nitrate medium)was evaluated. Navicula sp. showed the most growth in the nitrate medium with a ratio of total carotenoid to chlorophyll a of 1.94 observed on the 7th d. When Navicula sp. growth reached the stationary phase, the ratio of total carotenoid to chlorophyll a increased due to chlorophyll damage. The biomass productivity of Navicula sp. cultivated indoors and outdoors was 153 ± 3 and 93 ± 3 mg dried cell L −1 culture d −1 , respectively. Under light stress conditions, the Navicula sp. cell size was reduced. Among Navicula sp. carotenoids, the amount of β-carotene and fucoxanthin expressed by the cell in response to light stress was very dynamic. The fucoxanthin content of Navicula sp. decreased from 5.40 ± 0.05 (indoor)to 2.61 ± 0.06 (outdoor)mg g −1 dried biomass. However, the β-carotene content of Navicula sp. increased from 19.99 ± 0.16 (indoor)to 24.08 ± 0.16 (outdoor)μg g −1 of dried biomass, which indicates the importance of β-carotene for the photoprotection of cells.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Carotenoid pathway,Fucoxanthin,Navicula sp.,Photosynthetic pigments,Tropical marine diatom,β-Carotene[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by the Ministry of Research, Technology and Higher Education , the Republic of Indonesia through the Program of Materplan Percepatan dan Perluasan Pembangunan Indonesia (MP3EI) and the Program of Insentif Riset Sistem Inovasi Nasional (INSINAS) to ZN, and Beasiswa Pendidikan Pascasarjana Dalam Negeri (BPP-DN) and Beasiswa Disertasi Doktor to IT. We would like thank Dr. Bobby Fachrizal Assiddiq for the MS-MS analyses.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.algal.2019.101530[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]