[vc_empty_space][vc_empty_space]
Optimizations of Dual Polarization FMCW Weather Radar Signal Processing on CUDA Platform
a Institut Teknologi Bandung, School of Electrical Engineering and Informatics, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.Weather radar is a system that utilizes advanced radio wave engineering to detect precipitation in the atmosphere. One of the wave generation technique used in weather radar is frequency-modulated continuous wave (FMCW), with dual polarization for differentiating detected precipitation types by its shape and size. Weather radar signal processing is usually performed using digital signal processing and field-programmable gate array (FPGA), that performs well but with difficulty in system development and deployment. Software implementation of weather radar signal processing enables easier and faster development and deployment with the cost of performance when done serially. Parallel implementation using general purpose graphics processing units (GP-GPU) may provide best of both worlds with easier development and deployment compared to hardware-based solutions but with better performance than serial CPU implementations. In this paper, implementation of various optimization strategies weather signal radar processing in GP-GPU environment on the Nvidia CUDA platform is shown. Performance measurements show that among optimization strategies implemented, only the utilization of multiple CUDA streams give significant performance gain. This paper contributes in attempts to build full weather radar signal processing stack on GPU.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Dual-polarizations,Frequency-modulated continuous waves,Nvidia CUDA,Optimization strategy,Parallel implementations,Performance measurements,Software implementation,System development[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]GP-GPU,NVIDIA CUDA,Parallel programming,Signal processing,Weather radar[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICODSE.2018.8705821[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]