[vc_empty_space][vc_empty_space]
Temperature dependence diffusion coefficients of iron, boron and iron-boron calculated by molecular dynamics method
Arkundato A.a, Hasan M.a, Purwandari E.a, Pramutadi A.b, Aziz F.c
a Physics Department, Faculty of Mathematical and Natural Sciences, Universitas Jember, Jember, Indonesia
b Physics Department, Faculty of Mathematical and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
c Center for Science and Technology of Advanced Materials, National Nuclear Energy Agency, Serpong, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Published under licence by IOP Publishing Ltd.It has been calculated the diffusion coefficient of iron, boron and iron-boron system as temperature function using molecular dynamics simulation method. The diffusion coefficient is very important for knowing the physical processes. However, the diffusion coefficient data are not always available from experimental measurements, as so many applications using this data as an input of calculation. The computational molecular dynamics method shows a powerful tool for predicting the needed properties of material under consideration. In this work we predict the diffusion coefficient based on the Lennard-Jones potential under scheme of Lorentz-Berthelot mixing formula as the atomic interaction of material for molecular dynamics simulation. From this work we have determined the temperature dependence diffusion coefficient: D Fe(T)=5.20×10-7.exp(-393.82/T), D B(T)=1.74×10-6.exp(-297.62/T, D B→Fe-B(T) = 2.50×10-6.exp(-411.29/T) and D Fe→FeB(T)=5.274×10-9.exp(-930/T) in the unit of m2/s.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Atomic interactions,Lorentz-Berthelot,Molecular dynamics methods,Molecular dynamics simulation methods,Molecular dynamics simulations,Physical process,Temperature dependence,Temperature function[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors thank to the DRPM DIKTI Republic of Indonesia for supporting the financial of this work, under the scheme of the Hibah Kompetensi (PBK) 2018 Contract Number: SP DIPA-042.06.1.401516/2018, 05 Desember 2017.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1170/1/012008[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]