Enter your keyword

2-s2.0-85065992407

[vc_empty_space][vc_empty_space]

Natural anthraquinonefrom the bark of cinchona officinalis L

Insanu M.a, Aziz S.a, Fidrianny I.a, Hartati R.a, Elfahmia, Sukrasnoa, Wirasutisna K.R.a

a Pharmaceutical Biology Research Group, School of Pharmacy, InstitutTeknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© RASĀYAN. All rights reserved. Cinchona officinalis is known as the source of alkaloid compounds. Almost 7-12% of alkaloids were contained in its bark. Not many studies reported other chemical compounds in it. This research aimed to isolate non-alkaloid compounds in the C. officinalis bark. It was extracted by maceration using n-hexane, ethyl acetate, and ethanol. The alkaloidal fraction was separated from ethylacetate extract based on acid-base reaction. The fractions were continued to the next step of fractionations using vacuum liquid chromatography (VLC) and radial chromatography to yield compound 1. Characterizations of compound 1 were done by spectroscopic methods (UV, IR, ESI-MS, NMR ( 1 H-, 13 C-, HSQC, and HMBC)).The maximum wavelengths of compound 1 were 278 and 430 nm. 1 H- dan 13 C-NMR data showed that compound 1 consisted of ten hydrogens and fifteen carbons. ESI-MS showed that the molecular weight was 285.96. It was predicted as 1,3,8-trihydroxy-2-methoxy-9,10-anthraquinone. It was firstly isolated from the ethyl acetate extract of C.officinalis bark.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Anthraquinone,Cinchona officinalis,Isolation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This work was supported by the IMHERE research project from General Directorate of Higher Education, Ministry of Education and Culture of Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.31788/RJC.2019.1221831[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]