[vc_empty_space][vc_empty_space]
A comparative study of multi-objective expected improvement for aerodynamic design
Zuhal L.R.a, Palar P.S.a,b, Shimoyama K.b
a Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, West Java, Indonesia
b Institute of Fluid Science, Tohoku University, Sendai, Japan
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Elsevier Masson SASMulti-objective optimization in aerodynamics plays an important role in revealing trade-offs between conflicting objectives in order to discover important knowledge and insight for better future design. Of interest here is the use of Kriging surrogate models incorporated into a sequential Bayesian optimization (BO) strategy. In this paper, we studied four variants of multi-objective BO (MOBO) techniques that are based on expected improvement (EI), that is, Euclidean-based EI (EEI), expected hypervolume improvement (EHVI), ParEGO, and expected inverted penalty boundary intersection improvement (EIPBII) to understand their capabilities on handling multi-objective aerodynamic optimization problems. Numerical tests were performed on a set consisting of six generalized Schaffer problems (GSP), five low-fidelity, and one high-fidelity airfoil design problems. Results suggest that EHVI is the only method which consistently performed well on artificial and aerodynamic problems. EEI yields the worst performance and is not suitable to deal with various problem complexities. ParEGO, although it performs modestly on GSP, surprisingly works well on the low- and high-fidelity problems. On the other hand, EIPBII encounters the opposite case, where it is one of the best performer on GSP but yields modest performance on the aerodynamic problems. In light of the results, we suggest that EHVI is a highly potential MOBO method to be applied for multi-objective aerodynamic design optimization.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aerodynamic optimization,Bayesian optimization,Expected improvements,Kriging,Surrogate model[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aerodynamic optimization,Expected improvement,Kriging,Multi-objective Bayesian optimization,Surrogate model[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.ast.2019.05.044[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]