[vc_empty_space][vc_empty_space]
Calculating an upper bound of the locating-chromatic number of trees
Assiyatun H.a, Syofyan D.K.a, Baskoro E.T.a
a Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Elsevier B.V.The locating-chromatic number of a graph G(V,E) is the cardinality of a minimum resolving partition of the vertex set V(G) such that all vertices have distinct coordinates with respect to this partition and every two adjacent vertices not contained in the same partition class. Determining the locating-chromatic number of any tree is a difficult task. In this paper, we propose an algorithm to compute the upper bound on the locating-chromatic number of any tree. To do so, we decompose a tree into caterpillars and then compute the upper bound of the locating-chromatic number of this tree in terms of the ones for these caterpillars.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adjacent vertices,Cardinalities,Chromatic number,Chromatic number of a graphs,Resolving partitions,Tree,Upper Bound,Vertex set[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Algorithm,Locating-chromatic number,Tree,Upper bound[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was supported by Research Grant “ Program Penelitian dan Pengabdian kepada Masyarakat (P3MI), Institut Teknologi Bandung ”, Indonesia.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.tcs.2019.04.011[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]