Enter your keyword

2-s2.0-85066322612

[vc_empty_space][vc_empty_space]

Optimal Thresholding for Direction of Arrival Estimation using Compressive Sensing

Usman K.a, Gunawan H.b, Suksmono A.B.b

a Telkom University, Faculty of Electrical Engineering, Telecommunication Engineering, Bandung, Indonesia
b Institut Teknologi Bandung, Faculty of Math. and Natural Sciences, Department of Mathematics, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.Recently, there are a lot of study of direction of arrival (DoA) estimation using compressive sensing (CS). As CS is a new paradigm in signal processing, there are many aspects of this method that can be investigated. In the case of DoA estimation in noisy measurement, it is important to correctly determine a correct threshold of CS reconstruction, particularly when CS reconstruction is implemented using L1-norm minimization. Too small threshold value will make the correct DoA does not lies in CS reconstruction searching area, while too large threshold value will burden CS iteration to select a solution from a large number of possible solutions. In this paper, we derived an optimal threshold value for CS reconstruction for DoA estimation mathematically and verified the result using computer simulation. Using Gaussian noise model, we obtain the chi-square distribution of euclidean distance of noisy and noiseless received vector. We introduce the thresholding index κ to scale the standard deviation of chi-square distribution to determine the CS reconstruction threshold and simulate this value for various SNR. We find that the optimal κ value 0.5 to 1 for high noise environment, and optimal κ value 1 to 2 in low noise environment.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Chi-square distribution,Compressive sensing,Direction of arrival estimation,Direction of arrivalestimation(DOA),High noise environments,L1 norm,L1-norm minimizations,Sparse reconstruction[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]- Direction-of-arrival,Compressive sensing,Convex optimization,CVX-programming,L1-norm,Sparse reconstruction[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT The first author would like to thank Yayasan Pendidikan Telkom and Faculty of Electrical Engineering, Telkom University, for financial support of this research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICCEREC.2018.8712094[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]