Enter your keyword

2-s2.0-85066325079

[vc_empty_space][vc_empty_space]

Accelerated adiabatic dynamics in a triangular spin cluster

Setiawan I.a,b, Gunara B.E.a, Nakamura K.c,d

a Theoritical and High Energy Physics, Physics Departement Institut Teknologi Bandung, Bandung, Indonesia
b Physics Education Departement, University of Bengkulu, Kandang Limun Bengkulu, 38371, Indonesia
c Department of Applied Physics, Osaka City University, Sumiyoshi-ku, Osaka, 558-8585, Japan
d Faculty of Physics, National University of Uzbekistan, Vuzgorodok, Tashkent, 100174, Uzbekistan

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Published under licence by IOP Publishing Ltd.We propose a scheme of the fast forward of adiabatic spin dynamics in a triangular spin cluster. We settle the quasi-adiabatic spin dynamics (QASD) by adding the regularization terms to the original Hamiltonian and accelerate it with use of a large time-scaling factor which realizes QASD on shortened time scale. Assuming the candidate regularization Hamiltonian consisting of three-body interactions besides the pair-wise exchange interactions and magnetic field, we solved the regularization terms. These terms multiplied by the velocity function give rise to the statedependent counter-diabatic terms (CDTs) for each of adiabatic states. Our fast forward Hamiltonian proves to generate the plural number of state-dependent CDTs due to the driving three-body interactions. Applying this scheme to a simple transverse Ising model, we find 2 CDTs which contains both two-body and three body interaction. The driving two and three-body interaction in the fast-forward scheme guarantees the complete fidelity of accelerated states.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Adiabatic dynamics,Adiabatic state,Number of state,Regularization terms,State-dependent,Three-body interaction,Time scaling factors,Transverse Ising models[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1204/1/012020[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]