[vc_empty_space][vc_empty_space]
Spectral Distribution of Fano Interferences in Classical Damped Oscillation
Widartiningsih P.M.a, Rahmawati D.a, Fitriana A.a, Irhasa, Yusuf A.M.a,b, Yunus M.a, Viridi S.a
a Master Program in Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia
b Physics Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Published under licence by IOP Publishing Ltd.We present the classical analogy of Fano interferences in helpful view to understand Fano behavior of phonons excitation as the interaction of two harmonic oscillators in damped oscillation system. In order to obtain more informative explanation, we demonstrate the coupled oscillator motions in javascript using numerical integration method of 4th Order Runga Kutta. A detailed discussion of Fano spectral distribution is shown by considering some varied oscillation parameters including natural oscillation frequency, damping factor, coupling constant, as well as applied external force. It is further shown that the oscillation phase-shift differs in those varied oscillation parameters. The range of allowed values of parameters to get the appropriate results will be listed in this article.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Coupled oscillators,Coupling constants,Damped oscillations,Harmonic oscillators,Natural oscillation frequency,Numerical integration methods,Oscillation parameters,Spectral distribution[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1204/1/012126[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]