[vc_empty_space][vc_empty_space]
Residential load event detection in NILM using robust cepstrum smoothing based method
Iksan N.a, Sembiring J.a, Hariyanto N.a, Supangkat S.H.a
a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]Copyright © 2019 Institute of Advanced Engineering and Science. All rights reserved.Event detection has an important role in detecting the switching of the state of the appliance in the residential environment. This paper proposed a robust smoothing method for cepstrum estimation using double smoothing i.e. the cepstrum smoothing and local linear regression method. The main problem is to reduce the variance of the home appliance peak signal. In the first step, the cepstrum smoothing method removed the unnecessary quefrency by applying a rectangular window to the cepstrum of the current signal. In the next step, the local regression smoothing weighted data points to be smoothed using robust least squares regression. The result of this research shows the variance of the peak signal is decreased and has a good performance with better accuracy. In noise enviromment, performance prediction quite good with values greater than 0.6 and relatively stable at values above 0.9 on SNR> 25 for single appliances. Furthermore, in multiple appliances, performance prediction quite good at SNR> 20 and begins to decrease in SNR 25.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cepstrum smoothing,Event detection,Local linear regression,Variance reduction[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]We would like to thank to Blackberry Innovation Center Institute of Technology Bandung (BBIC-ITB); Semarang State University (UNNES); and Ministry of Research, Technology and Higher Education of the Republic of Indonesia (KEMRISTEKDIKTI) for their assistance in facilitating education and research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.11591/ijece.v9i2.pp742-752[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]