Enter your keyword

2-s2.0-85066333087

[vc_empty_space][vc_empty_space]

Theoretical study on frontier orbitals of dehydrogenated tetrahydrocurcumin in gas phase

Boli L.S.P.a,b, Khoirunisa V.a,c, Saputro A.G.a, Agusta M.K.a, Rusydi F.d, Rachmawati H.a, Dipojono H.K.a

a Engineering Physics Research Group, Institut Teknologi Bandung, Bandung, Indonesia
b Department of Physics, Universitas San Pedro, Kupang, Indonesia
c Engineering Physics Program, Institut Teknologi Sumatera, Lampung Selatan, Indonesia
d Theoretical Physics Research Group, Department of Physics, Universitas Airlangga, Surabaya, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Published under licence by IOP Publishing Ltd.In this present work, we calculated two frontier orbital energies – singly occupied molecular orbital (SOMO) and lowest unoccupied molecular orbital (LUMO) – of dehydrogenated tetrahydrocurumin (THC) using density-functional theory (DFT) in gas phase. We used the energy difference of SOMO and LUMO to assess the stability of dehydrogenated THC after performing a hydrogen atom transfer toward reactive oxygen species (ROS). We began by optimizing dehydrogenated THC at six hydrogen abstraction sites. Two hydrogen abstraction sites are at O-H groups and four hydrogen abstraction sites are at C-H groups. Then, we compared the value of SOMO and LUMO energy difference in each site. Our calculations showed that dehydrogenated THC at O-H groups are more stable than dehydrogenated THC at C-H groups.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Energy differences,Frontier orbital energies,Hydrogen abstraction,Hydrogen-atom transfer,Lowest unoccupied molecular orbital,Reactive oxygen species,Singly occupied molecular orbitals,Tetrahydrocurcumin[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors are grateful to Computational Material Design Laboratory that has supported this research and Lembaga Pengelola Dana Pendidikan (LPDP) that has funded this research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1742-6596/1204/1/012019[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]