Enter your keyword

2-s2.0-85066468085

[vc_empty_space][vc_empty_space]

Measurement matrix for sparse internet data based compressive sampling

Irawati I.D.a, Suksmono A.B.b, Edward I.J.M.b

a Telkom Applied Science School, Telkom University, Bandung, Indonesia
b School of Electrical and Informatics, Institut Teknologi Bandung, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.Compressive Sampling (CS) process consists of three main parts, namely sparse representation, measurement, and sparse reconstruction. The measurement matrix is used for sampling signal from the sparse signal representation process. The success of the reconstruction process is also strongly influenced by the selection of proper measurement matrix. One important factor in CS is the use of well-design measurement matrix. This paper compares the performance of measurement matrices which are Uniform, Normal, Binary, Half-normal, Log-normal, Binomial, Poisson, and Exponential matrix that applied to internet traffic data. At the right Restricted Isometric Constant (RIC), we evaluate the measurement matrix performance using Normalized Mean Square Error (NMSE) and Compression Ratio (CR). The results show that Binomial measurement matrix is superior with the smallest NMSE and the highest CR. This binomial measurement matrix is also capable of overcoming various patterns of data loss on the network.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Compressive sampling,Data loss,Measurement matrix,Normalized mean square error,Reconstruction process,Sparse reconstruction,Sparse representation,Sparse signal representation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Compression ratio,Compressive Sampling,Data loss,Internet traffix data,Measurement matrix[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT This research was funded in part by Telkom Foundation and LPPM ITB. We thank to our colleagues from LTRGM Laboratory who were very helpful to this research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICSEC.2018.8712812[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]