[vc_empty_space][vc_empty_space]
Miniaturization of 2.4ghz siw antenna using complementary split ring resonator
Saputra A.a, Ismail N.a, Yunus M.b, Munir A.c
a Department of Electrical Engineering, Faculty of Science and Technology, UIN Sunan Gunung Djati, Bandung, Indonesia
b Department of Electrical Engineering, Faculty of Engineering, Universitas Pakuan, Bogor, Indonesia
c Radio Telecommunication and Microwave Laboratory, School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 IEEE.This paper discusses the miniaturization of substrate integrated waveguide (SIW) antenna with complementary split ring resonator (CSRR). The proposed antenna is intended to operate at the frequency of 2.4GHz for wireless local area network (WLAN) application. The antenna which is fed using a microstrip line feeding technique is designed on an FR4 epoxy dielectric substrate with the relative permittivity of 4.2 and the thickness of 1.6mm. To demonstrate the size miniaturization, a conventional SIW antenna without CSRR is also designed using the same dielectric substrate to operate at the same resonant frequency. Characteristics of both antennas are then compared each other in terms of physical size, return loss, VSWR, gain, and radiation pattern. From the result, it is shown that the incorporation of CSRR can achieve the miniaturization of conventional SIW antenna up to 59.2%.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Complementary split ring resonators,Complementary split-ring resonator,Dielectric substrates,Microstrip-line feeding,miniaturization,Relative permittivity,Split ring resonator,Wireless local area network applications[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]antenna,complimentary split ring resonator (CSRR),miniaturization,substrate integrated waveguide (SIW),wireless local area network (WLAN).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]ACKNOWLEDGMENT The authors would express sincere gratitude to the Faculty of Science and Technology and the Research Center of the State Islamic University (UIN) Sunan Gunung Djati Bandung for supporting financially and motivating the research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/TSSA.2018.8708822[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]