Enter your keyword

2-s2.0-85067250972

[vc_empty_space][vc_empty_space]

Numerical simulation of finite difference Time Domain (FDTD) for solving the boundary value problem (BVP) in Earth Layer

Putra A.S.a, Alam I.S.a, Sukonob, Srigutomo W.c, Bon A.T.d

a Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gajah Mada, Indonesia
b Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
c Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
d Department of Production and Operations, University Tun Hussein Onn Malaysia, Malaysia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© IEOM Society International.electromagnetic problem. The FDTD is derived by discretizing the Maxwell’s Equation using the finite difference (FN) method. We test the governing equation by numerically constructing the Yee Algorithm in 1-Dimensional (1-D) System to describe the distribution of the Transverse Electric (TE) and Transverse Magnetic (TM) within two type boundary condition. First, we simulate the system using Perfectly Electrically/Magnetically Conducting (PEC/PMC) boundary condition, second with Absorbing Boundary Condition (ABCs). We assume that TE and TM are propagate in homogenous and isotropic media. Thereore, the conductivity σ, permeability, μ and permittivity remains constant time by time. For a further studiy, we apply the simulation to the isotropic and homogenous 2 dimensional earth layers that have a various condition of the BVP. The result leads to the conclusion that for the ideal condition of the layered earth model, the simulation is able to give a best solution for each earth layer problem.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]BVP,Earth Layer Problem,Electromagnetic,FDTD,Finite Difference,Numerical simulation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]