Enter your keyword

2-s2.0-85067342806

[vc_empty_space][vc_empty_space]

Backward bifurcation of an SIR-SI model with vaccination and treatment

Nugraha E.S.a,b, Nuraini N.a, Naiborhu J.a

a Industrial and Financial Mathematics Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
b Department of Mathematics Education, STKIP Surya, Tangerang, Banten, 15115, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 SAE International. All rights reserved.In the presence of treatment, most epidemic models demonstrate behavior of backward bifurcation. This is important in epidemiology because it provides significant information for disease control. However, most models consider only one single population. In this paper, an extended model of two populations in the form SIR-SI involving vaccination and treatment is analyzed. The analysis of local and global stability of equilibria is discussed. By using the center manifold theorem, this model has backward bifurcation behavior when the number of infected people exceeds the treatment capacity. Vaccination decreases the basic reproduction number, but does not affect the backward bifurcation behavior. This study also showed that under vaccination and treatment, an endemic equilibrium always occurs when R0 1.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Backward bifurcation,Host-vector model,Infectious disease[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.17777/ascm2019.29.1.69[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]