Enter your keyword

2-s2.0-85067795664

[vc_empty_space][vc_empty_space]

Characterization of Zeolite A from Coal Fly Ash Via Fusion-Hydrothermal Synthesis Method

Wulandari W.a, Paramitha T.a, Rizkiana J.a, Sasongko D.a

a Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.Zeolite A has been successfully synthesized from coal fly ash by using fusion followed by hydrothermal method. This paper describes the characterization of zeolite A. The effects of hydrothermal time, Si/Al molar ratio, and alkalinity in the converting coal fly ash to zeolite A were also investigated. The coal fly ash was obtained from a local power plant at East Java, Indonesia and contained major oxides such as SiO2 (18.60 wt%), Al2O3 (7.18 wt%), Fe2O3 (40.20 wt%), CaO (25.20 wt%). The fusion hydrothermal method consists of the following steps: pre-treatment, fusion of coal fly ash with sodium hydroxide, aging, and hydrothermal process. The synthesized material was characterized by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), and specific surface area analytical method. The results show that the products contain zeolite A as the major phase, while the highest specific surface area of zeolite A is 37.121 m2/g. It implies that zeolite A as a higher value added product can be obtained from a solid waste/by-product of power plant, which has wide range applications, including for ion exchange and heavy metal adsorbent from waste water.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Analytical method,Fourier transform infrared,Heavy metal adsorbents,Hydrothermal methods,Hydrothermal process,Hydrothermal time,Synthesized materials,Value added products[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to thank Program Penelitian, Pengabdian kepada (P3MI) 2017 Institut Teknologi Bandung for funding in this research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/543/1/012034[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]