[vc_empty_space][vc_empty_space]
Performance Evaluation of Coal Fly Ash Based Zeolite A for Heavy Metal Ions Adsorption of Wastewater
Paramitha T.a, Wulandari W.a, Rizkiana J.a, Sasongko D.a
a Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© Published under licence by IOP Publishing Ltd.One of the environmental characteristics of chemical industries is producing wastewater effluent that containing heavy metals, which are hazardous to the aquatic life and the human health. The purpose of this research is to evaluate the use of zeolite A as a sorbent for the heavy metal ions removal from wastewater. Zeolite A was synthesized from coal fly ash by fusion-hydrothermal method by the authors contains cation exchange capacity of 5.05 meq/g. This study used a series of artificial wastewater containing one and mixed heavy metal ions (Cu (II) and Zn (II)). The result showed that wastewater containing one heavy metal ion was almost fully adsorbed, for instance percentage sorption of Cu (II) and Zn (II) ions were 95.61 % and 92.15 %. On the other hand, for binary system, the percentage sorption slightly decreased becoming 91.51 % with the increase the amount of Zn (II) ion in solution. Based on kinetic data, sorption of Cu (II) and Zn (II) ions is controlled by pseudo-second order. In addition, adsorption isotherm follows Langmuir model. From this study, it is confirmed that zeolite A has a good possibility to be used as sorbent of heavy metal ions removal in wastewater.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artificial wastewater,Cation exchange capacities,Environmental characteristic,Heavy metal ions removals,Hydrothermal methods,Langmuir models,Pseudo second order,Wastewater effluents[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to thank Program Penelitian, Pengabdian kepada (P3MI) 2017 Institut Teknologi Bandung for funding in this research.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1757-899X/543/1/012095[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]