Enter your keyword

2-s2.0-85068338332

[vc_empty_space][vc_empty_space]

An integrated model for lot sizing with supplier selection considering quantity discounts, expiry dates, and budget availability

Sitepu T.E.N.a, Cakravastia A.a

a Supply Chain Management Department, Institut Teknologi Harapan Bangsa, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 ExcelingTech Pub, UK.In this paper, a dynamic multi-product multi-period lot sizing with supplier selection problem (DLSSP) with quantity discount, expiry dates, and budget availability is presented. Demand of products for each period are independent and known. The cost consists of ordering, purchasing, transportation, expiry, holding, and interest charge. The objective is to find the optimal order quantity of all items in each period to minimize inventory cost. A mixed integer nonlinear model programming (MINLP) is first developed to model the problem. Since model is hard to solve using exact method, Genetic Algorithm (GA) and Simulated Annealing (SA) is applied, in which design parameters are set using Taguchi method. Computational results demonstrate the applicability of the proposed model and comparing the results show efficiency of both algorithms as well. The results show that, while both algorithms have statistically similar performances, proposed SA is the better algorithm in all problems.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Lot size,Perishable product,Quantity discount,Simulated annealing,Supplier selection[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]