[vc_empty_space][vc_empty_space]
Secondary metabolite profiles in the methanolic extract of Leucobryum javense isolated from tropical montane forest in West Java, Indonesia
Azar A.W.P.a, Rosleine D.a, Faizal A.a
a Plant Sciences and Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Author(s).Generally, mosses are the first terrestrial plants which synthesize secondary metabolites in response to biotic or abiotic stresses, yet there was less study reported the effect of different altitudes on the secondary compound production in bryophytes. Therefore, we designed a study to assess the impact of interaction between elevation and substrate type on secondary metabolite profiles produced by a selected tropical moss species, Leucobryum javense. Samples were collected from two different locations in West Java Province, Indonesia, namely Cibodas Botanical Garden (CBG) at 1300-1400m asl and Gunung Gede Pangrango National Park (GGPNP) at 1600-1700 m a.s.l. Samples of L. javense were extracted in methanol and were subjected to Gas Chromatography – Mass Spectrometry (GC-MS) analysis. Interestingly, L. javense contained four fatty acid compounds (octadecanoic acid; n-hexadecanoic acid; 9-octadecenoic acid (Z)-, methyl ester; and octadecanoic acid, methyl ester), which present abundantly in all samples. Further chemical diversity analysis indicated that the profile of compounds was varied regards to their locations and substrate types. Thus, different ecological conditions accounted for different secondary metabolite profiles in L. javense.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was partially funded by the Institut Teknologi Bandung, under the scheme of Program Riset ITB 2019 (Contract No. 470/I1.C02.2/KU/2019).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1063/1.5115631[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]