[vc_empty_space][vc_empty_space]
Characterisation of the effect of Al2O3 on the liquidus temperatures of copper cleaning furnace slags using experimental and modelling approach
Hidayat T.a,b, Hayes P.C.b, Jak E.b
a Metallurgical Engineering Resarch Division, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Bandung, West Java, 40116, Indonesia
b Pyrometallurgy Innovation Centre (PYROSEARCH), School of Chemical Engineering, University of Queensland, Brisbane, 4072, Australia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 The Japan Institute of Metals and Materials.Most metallurgical smelting processes operate over a limited range of compositions and temperatures but generally, even with complex slag systems, within a given primary phase field. Knowledge of the sensitivity of the liquidus to changes in composition enables improved temperature control and stability of operation. The paper describes a general approach that was used to characterize the liquidus temperatures of the “Cu2O”“FeO”SiO2Al2O3 slags in an electric slag cleaning furnace operation as function of the principal chemical components using a combination of available computer based thermodynamic database descriptions of complex slags and targeted series of laboratory experiments. An approximate mathematical relationship, valid for a limited range of compositions and temperatures, has been developed describing the liquidus temperature of the slags as a function Fe/SiO2 ratio, Cu, and Al2O3 concentrations in slag.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Copper slag,Laboratory experiments,Liquidus temperature,Mathematical relationship,Primary phase field,Slag cleanings,Slag liquidus,Thermodynamic database[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Copper slag,Phase equilibrium,Slag cleaning,Slag impurities,Slag liquidus[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The authors would like to thank the Australian Research Council Linkage program, Anglo American Platinum, Altonorte Glencore, Atlantic Copper, Aurubis, BHP Billiton Olympic Dam Operation, Boliden, Glencore Technologies, Kazzinc Glencore, PASAR Glencore, Outotec Oy (Espoo), Penoles, Rio Tinto Kennecott, and Umicore for the financial support for this research. The authors acknowledge the support of the AMMRF at the Centre for Microscopy and Microanalysis at the University of Queensland.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.2320/matertrans.M2018373[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]