Enter your keyword

2-s2.0-85068965067

[vc_empty_space][vc_empty_space]

Speech Artifact Removal from Eeg Recordings of Spoken Word Production with Tensor Decomposition

Lovenia H.a,c, Tanaka H.a, Sakti S.a,b, Purwarianti A.c, Nakamura S.a,b

a Nara Institute of Science and Technology, Japan
b RIKEN, Center for Advanced Intelligence Project AIP, Japan
c Department of Informatics, Bandung Institute of Technology, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.Research about brain activities involving spoken word production is considerably underdeveloped because of the undiscovered characteristics of speech artifacts, which contaminate electroencephalogram (EEG) signals and prevent the inspection of the underlying cognitive processes. To fuel further EEG research with speech production, a method using three-mode tensor decomposition (time x space x frequency) is proposed to perform speech artifact removal. Tensor decomposition enables simultaneous inspection of multiple modes, which suits the multi-way nature of EEG data. In a picture-naming task, we collected raw data with speech artifacts by placing two electrodes near the mouth to record lip EMG. Based on our evaluation, which calculated the correlation values between grand-averaged speech artifacts and the lip EMG, tensor decomposition outperformed the former methods that were based on independent component analysis (ICA) and blind source separation (BSS), both in detecting speech artifact (0.985) and producing clean data (0.101). Our proposed method correctly preserved the components unrelated to speech, which was validated by computing the correlation value between the grand-averaged raw data without EOG and cleaned data before the speech onset (0.92-0.94).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Artifact removal,Cognitive process,Correlation value,Electroencephalogram signals,Independent component analysis(ICA),Speech production,Spoken words,Tensor decomposition[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]EEG,Speech artifact removal,spoken word production,tensor decomposition[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]Part of this work was supported by JSPS KAKENHI (Grant Numbers JP17H06101, JP17K00237, and JP16K16172).[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICASSP.2019.8682414[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]