[vc_empty_space][vc_empty_space]
Thermal conductivity of phase-change material CACL2·6H2O with ZnO nanoparticle dopant based on temperature-history method
Sutjahja I.M.a, Silalahi A.O.a, Wonorahardjo S.a, Kurnia D.a
a Dept. of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Revista Romana de Materiale/Romanian Journal of Materials. All rights reserved.Determination of thermal conductivity based on temperature history (T-history) method is low in cost and can be applied directly to some samples, as it depends only on the number of temperature sensors used in a measurement. However, very little published data has reported the solid and liquid thermal conductivities of phase-change materials (PCMs) based on this analytical method. The thermal conductivity based on T-history data is related to other thermophysical parameters of the PCM, such as the solid and liquid specific heats and the latent heat of the solid–liquid phase transition. This report analyses the solid and liquid thermal conductivities of CaCl2·6H2O as an inorganic PCM, using thermophysical parameters obtained from two methods of analysis, namely the T-history method proposed by Zhang et al. and its improvement by Hong et al. (Z/H) and Marin et al. (M) based on the temperature-dependent enthalpy curve. The data predict the enhancement of thermal conductivity with 1 wt.% ZnO nanoparticles as a dopant, which permit effective heat transport in the material in response to environmental heat.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]CaCl2·6H2O + ZnO dopant,Enthalpy-temperature curve,Heat of fusion,Phase-change material (PCM),Solid and liquid specific heats,Solid and liquid thermal conductivities,T-history method[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]