[vc_empty_space][vc_empty_space]
A compact model for gate tunneling currents in undoped cylindrical surrounding-gate metal-oxide-semiconductor field-effect transistors
Noor F.A.a, Bimo C.a, Syuhada I.a, Winata T.a, Khairurrijal K.a
a Department of Physics, Physics of Electronic Material Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Elsevier B.V.We present a compact model of the gate tunneling current in cylindrical surrounding-gate (SG) metal-oxide-semiconductor field-effect transistors (MOSFETs) based on quantum mechanical correction. The model is physics-based and is given in an analytical closed form. We start by deriving a quadratic approximation of the quantum electrostatic potential with the two lowest energy levels using quantum perturbation theory. In addition, small-diameter cylindrical SG MOSFETs can be described excellently by taking both structural and electrical confinement effects into account. A self-consistent Schrödinger-Poisson simulation was used as a benchmark to assess the proposed model. It was found that the calculated gate tunneling currents determined using the model matched well with the corresponding currents derived using self-consistent calculations. The model is thus useful for fast analysis of gate tunneling currents within the context of a circuit simulator.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cylindrical surrounding-gate,Dinger equation,Electrostatic potentials,Gate tunneling currents,Self-consistent calculation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Cylindrical surrounding-gate MOSFET,Electrostatic potential,Energy level,Gate tunneling current,Poisson-Schrödinger equation,Self-consistent calculation[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]This research was financially supported by “ Riset Desentralisasi PDUPT DIKTI ” Research Grant from Ministry of Research, Technology and Higher Education , Indonesia, in the fiscal year of 2016 with the contract number: 586a/I1.C01/PL/2016 .[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.mee.2019.111086[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]