[vc_empty_space][vc_empty_space]
Performance analysis of energy storage in smart microgrid based on historical data of individual battery temperature and voltage changes
Haq I.N.a, Kurniadi D.a, Leksono E.a, Yuliarto B.a, Soelami F.X.N.a
a Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Published by ITB Journal Publisher.In this work, a historical data based battery management system (BMS) was successfully developed and implemented using an embedded system for condition monitoring of a battery energy storage system in a smart microgrid. The performance was assessed for 28 days of operating time with a one-minute sampling time. The historical data showed that the maximum temperature increment and the maximum temperature difference between the batteries were 4.5 °C and 2.8 °C. One of the batteries had a high voltage rate of change, i.e. above 3.0 V/min, and its temperature rate of change was very sensitive, even at low voltage rate of changes. This phenomenon tends to indicate problems that may deplete the battery energy storage system’s total capacity. The primary findings of this study are that the voltage and temperature rates of change of individual batteries in real operating conditions can be used to diagnose and foresee imminent failure, and in the event of a failure occurring the root cause of the problem can be found by using the historical data based BMS. To ensure further safety and reliability of acceptable practical operating conditions, rate of change limits are proposed based on battery characteristics for temperatures below 0.5 °C/min and voltages below 3.0 V/min.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Energy storage systems,Performance analysis,Smart Micro Grids,Temperature changes,Voltage change[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Battery management system,Energy storage system,Performance analysis,Smart microgrid,Temperature changes,Voltage changes[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]The first author would like to acknowledge the Lembaga Pengelola Dana Pendidikan (LPDP), the Republic of Indonesia for providing his doctoral program scholarship. This research was partially supported by Research Grant ITB and Research Grant of Ministry of Research, Technology, and Higher Education.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.5614/j.eng.technol.sci.2019.51.2.1[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]