[vc_empty_space][vc_empty_space]
The role of substrate temperature on defects, electronic transitions, and dark current behavior of ZnO films fabricated by spray technique
Nurfani E.a, Kadja G.T.M.b, Purbayanto M.A.K.b, Darma Y.b
a Materials Engineering Program, Institut Teknologi Sumatera, Jati Agung, 35365, Indonesia
b Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 Elsevier B.V.We have studied structural, electrical, and optical properties of ZnO thin films deposited by a spray technique. The samples were deposited by varying the deposition temperature from 200 °C (S200) up to 500 °C (S500). As the results, using X-ray diffraction and Raman scattering experiments, improvement in crystalline is observed by increasing the deposition temperature as indicated by the intensity enhancement of (002) plane and the E2-high vibration mode. From I–V curves, the photosensitivity of the films also increases up to 37 times (S500) with increasing the temperature. We reveal that strong UV absorption in S500 plays a significant role in the enhancement of sensitivity. On the other hand, the low dark current in S300 is due to the high density of oxygen vacancies, leading to higher mid-gap transitions, green emission, and Schottky barrier height. In the same time, the narrowing effect of the band gap from 3.28 to 3.20 eV is observed with the decrease of the temperature, which is related to the defect states from oxygen vacancies. Our study is essential to design and massively fabricate ZnO-based optoelectronic devices using a simple technique.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Current behaviors,Deposition temperatures,Electronic transition,Intensity enhancement,Schottky barrier heights,Spray technique,Substrate temperature,ZnO thin film[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Deposition temperature,Photodetector,Point defects,Spray,ZnO thin film[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]EN thanks to Hibah ITERA SMART 2019 (No. B/326/IT9. C1/PT.01.03/2019) from Institut Teknologi Sumatera, and Ministry of Research, Technology and Higher Education of Indonesia. GTMK thanks to Hibah Riset Pengembangan Kompetensi (RPK) Institut Teknologi Bandung 2019 No. 94d/I1?C01/PL/2019.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1016/j.matchemphys.2019.122065[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]