Enter your keyword

2-s2.0-85071347684

[vc_empty_space][vc_empty_space]

Controlled morphology of electrospun nanofibers from waste expanded polystyrene for aerosol filtration

Rajak A.a, Hapidin D.A.a, Iskandar F.a, Munir M.M.a, Khairurrijal K.a

a Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IOP Publishing Ltd.This paper reports on the recycling of expanded polystyrene (EPS) waste to be repurposed as EPS nanofibrous mats for air filtration applications. The EPS nanofibrous mats were prepared via electrospinning technique. The EPS solutions for producing the mats were made by dissolving the EPS waste in dimethylformamide (DMF) and d-limonene solvents. The mixing ratio of DMF and d-limonene solvents were varied to obtain EPS solutions with different surface tension and viscosity. As a result, different fiber morphology (smooth fiber, wrinkled fiber, and beaded fiber) and diameter ranging from 314 nm to 3506 nm were obtained. The synthesized EPS nanofibrous mats were characterized by scanning electron microscope, Fourier-transform infrared spectroscopy, x-ray diffraction spectroscopy, differential scanning calorimetry, mechanical strength, porosity, and water contact angle measurement apparatus. The mechanical strength measurement exhibited that the beaded fiber had the highest tensile strength and the lowest elasticity compared to wrinkled and smooth fiber. The water contact angle measurement showed that the EPS nanofibrous mats were classified as ultra-hydrophobic, which was a good criterion for air filter media. Some filtration parameters of the EPS nanofibrous mats were measured, including particle collecting efficiency, pressured drop, and quality factor. The particle collecting efficiency of each EPS nanofibrous mats was measured using monodisperse polystyrene latex (PSL) particles and PM2.5 from burning incense as the test particles. The EPS nanofibrous mats had a high collecting efficiency (up to 99.99%) and had a low pressure drop (below 70 Pa) for the face velocity of 5.4 cm s-1. The quality factor of the EPS nanofibrous mats reached 0.10 for PSL filtration and 0.16 for PM2.5 filtration. Overall, the EPS nanofibrous mats with controlled morphology were suitable to be used as air filtration media with high mechanical strength, ultra-hydrophobic surface, and high quality factor.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Aerosol filtration,Collecting efficiency,Electrospinning techniques,Electrospun nanofibers,High mechanical strength,Monodisperse polystyrene,Ultra hydrophobic surface,Water contact angle measurement[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]aerosol filtration,electrospinning,EPS waste,nanofiber[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1088/1361-6528/ab2e3b[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]