Enter your keyword

2-s2.0-85071508551

[vc_empty_space][vc_empty_space]

Practical Decoding Scheme for Doubly Irregular Sparse Code Multiple Access

Hidayat I.a, Meylani L.a, Kurniawan A.a, Arifianto M.S.a, Anwar K.

a School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Bandung, Indonesia
b School of Electrical Engineering, Telkom University, Bandung, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 IEEE.Doubly irregular sparse code multiple access (DI-SCMA) is a type of sparse code multiple access (SCMA) with irregular degree distributions both in resource node (RN) and user node (UN) to increase the overloading factor. This paper proposes a practical decoding scheme for DI-SCMA having low computational complexity based on using peeling decoding algorithm. We also use mother constellation capable of detecting 4 users simultaneously based on binary shift keying (BPSK)-like mapping leading to a total constellation similar to the 8 phase shift keying (8-PSK). We evaluate the decoding behaviour of the proposed DI-SCMA using extrinsic information transfer (EXIT) chart and computer simulations. Our results confirm the validity of achievable overloading factor using the practical decoding technique with better bit error rate (BER) performances compared to performances of 8-PSK modulations.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Bit error rate (BER) performance,Decoding techniques,Degree distributions,doubly irregular SCMA (DI-SCMA),Extrinsic information transfer charts,Low computational complexity,mother constellation,Packet loss rates[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]doubly irregular SCMA (DI-SCMA),mother constellation,packet loss rate,peeling decoding[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1109/ICT.2019.8798822[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]