Enter your keyword

2-s2.0-85071840638

[vc_empty_space][vc_empty_space]

Deciphering the Interface of a High-Voltage (5 V-Class) Li-Ion Battery Containing Additive-Assisted Sulfolane-Based Electrolyte

Lu D., Xu G., Hu Z.c, Cui Z., Wang X., Li J., Huang L., Du X., Wang Y., Ma J., Lu X., Lin H.-J.d, Chen C.-T.d, Nugroho A.A.e, Tjeng L.H.c, Cui G.

a Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
b Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
c Max Planck Institute for Chemical Physics of Solids, Dresden, 01187, Germany
d National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
e Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia

[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimNext generation high energy density lithium-ion batteries have aroused great interests worldwide. Herein, in a high-voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB (graphitic mesocarbon microbeads) battery system using 1 m lithium difluoro(oxalate)borate/sulfolane, tris(trimethylsilyl) phosphite (TMSP) additive is added to significantly improve room/high temperature cycling performances. The unchanged X-ray diffraction patterns suggest the bulk crystal structure of cycled MCMB anode and LiNi0.5Mn1.5O4 cathode are well preserved. Moreover, soft X-ray absorption spectroscopy (XAS) taken from bulk sensitive fluorescence-yield (FY) mode reveals the unchanged bulk electronic structure of cycled LiNi0.5Mn1.5O4 cathode. Therefore, it is concluded that only interface instability contributes to capacity fading of full-cells. However, electrode/electrolyte interface and corresponding interfacial reaction processes are always “enigmatic.” First, X-ray photoelectron spectroscopy (XPS) and in situ differential electrochemical mass spectrometry (DEMS) are used to more accurately decipher the TMSP additive action mechanism in MCMB/electrolyte interfacial reaction processes, by identifying the interfacial solid and gas byproducts, respectively. Then, the crucial role of TMSP additive in modifying cathode/electrolyte interface is revealed by XPS and soft XAS taken from surface sensitive total electron yield (TEY) mode. This paper provides valuable perspectives for formulating novel electrolytes, and for more accurately depicting additive action mechanism in “enigmatic” electrode/electrolyte interfacial reaction processes.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Action mechanisms,Bulk electronic structures,Differential electrochemical mass spectrometry,Electrode/electrolyte interfaces,High energy densities,High voltage batteries,Mesocarbon microbeads,Soft x-ray absorption spectroscopies[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]action mechanisms,additives,electrolytes,high voltage batteries,interfaces[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text]D.L. and G.X. contributed equally to this work. This original research was supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 51625204), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA22010602), the National Key R&D Program of China (Grant No. 2018YFB0104300), Youth Innovation Promotion Association CAS (No. 2017253), and the Key Scientific and Technological Innovation Project of Shandong (Grant No. 2017CXZC0505). The authors acknowledge the support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text]https://doi.org/10.1002/smtd.201900546[/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]