[vc_empty_space][vc_empty_space]
Evaluating mangrove forest deforestation causes in Southeast Asia by analyzing recent environment and socio-economic data products
Irwansyah Fauzi A.a,d, Dimara Sakti A.a, Fajri Yayusman L.a, Budi Harto A.a,d, Budi Prasetyo L.b, Irawan B.c, Wikantika K.a,d
a Center for Remote Sensing, Bandung Institute of Technology, Bandung, 40132, Indonesia
b Department of Forest Resources Conservation and Ecotourism, Bogor Agricultural University, Bogor, 16680, Indonesia
c Department of Biology, Airlangga University, Surabaya, 60115, Indonesia
d Remote Sensing and Geographical Information Science Research Group, Faculty of Earth Science and Technology, Bandung, 40132, Indonesia
[vc_row][vc_column][vc_row_inner][vc_column_inner][vc_separator css=”.vc_custom_1624529070653{padding-top: 30px !important;padding-bottom: 30px !important;}”][/vc_column_inner][/vc_row_inner][vc_row_inner layout=”boxed”][vc_column_inner width=”3/4″ css=”.vc_custom_1624695412187{border-right-width: 1px !important;border-right-color: #dddddd !important;border-right-style: solid !important;border-radius: 1px !important;}”][vc_empty_space][megatron_heading title=”Abstract” size=”size-sm” text_align=”text-left”][vc_column_text]© 2018 Proceedings – 39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, ACRS 2018Recent research conducted in Southeast Asia reveals that mangrove forest degraded 2.12% from 2002 to 2012. Availability of various data products that commonly used to analyze global and regional phenomenon encourages to be utilized for this topic. Therefore, this research aims to utilising specific environment and socioeconomic data products for explaining mangrove forest deforestation in Southeast Asia countries based on Global Distribution of Mangrove (USGS) and Mangrove Forest Cover Loss (CGMFC-21) data. Environment and socioeconomic data products applied in this study are percent tree cover (MOD44B), rainfed field and irrigated field (HYDE 3.2), cropland, water, & urban (MCDC12Q1), average lights (DMSP-OLS v4), gross domestic production (DRYAD), and population density (GPW v4). Analysis organized by correlating existing data products to mangrove deforestation data and dominant land use of deforested mangrove patches (Richards & Friess, 2016) data. Furthermore, the result will be synthesize to estimate mangroves conversion types classified into three dominant drivers i.e., agriculture, aquaculture, & infrastructure. Finally, the outcome will be compared to the dominant land use of deforested mangrove patches (Richards & Friess, 2016). As an addition, some potential areas will be highlighted and discussed. The result indicates that 56.27% of the total deforested mangrove grid show mangroves are converted to agriculture, 27.11% grid show mangroves are converted to aquaculture, and 55.98% grid show mangroves are converted to infrastructure. As a result of this study, it was concluded that existing environment & socio-economic data products could describe major driven factor of mangroves conversion types in Southeast Asia from 2000 to 2012 i.e., agriculture, aquaculture, and infrastructure respectively with relevancy 98.21%, 77.45%, and 65.22% comparatively to Dominant Land Use of Deforested Mangrove Patches in 2012 (Richards & Friess, 2016) data. Therefore, variations and resolution of data products will be the primary key in improving this method.[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Author keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Global distribution,Gross domestic productions,Irrigated fields,Mangrove forest,Population densities,Recent researches,Socio-economic data,Southeast Asia[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Indexed keywords” size=”size-sm” text_align=”text-left”][vc_column_text]Blue carbon,GIS,Remote sensing[/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”Funding details” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][vc_empty_space][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][vc_empty_space][megatron_heading title=”DOI” size=”size-sm” text_align=”text-left”][vc_column_text][/vc_column_text][/vc_column_inner][vc_column_inner width=”1/4″][vc_column_text]Widget Plumx[/vc_column_text][/vc_column_inner][/vc_row_inner][/vc_column][/vc_row][vc_row][vc_column][vc_separator css=”.vc_custom_1624528584150{padding-top: 25px !important;padding-bottom: 25px !important;}”][/vc_column][/vc_row]